2005 Vol. 7, No. 7 1391–1393

Facile One-Pot Synthesis of 2,3,5-Substituted 1,2,4-Oxadiazolines from Nitriles in Aqueous Solution

B. Narasimhulu Naidu* and Margaret E. Sorenson

The Bristol-Myers Squibb Pharmaceutical Research Institute, 5 Research Parkway, Wallingford, Connecticut 06422

narasimhulu.naidu@bms.com

Received February 1, 2005

ABSTRACT

$$R_1CN + NH + R_3 + R_4 + R_5 + R_5$$

Alkyl/aryl amidoximes, prepared from the corresponding nitriles and N-alkylhydroxylamines, have readily undergone consecutive Michael additions to electron-deficient alkynes and provided highly substituted 1,2,4-oxadiazolines in good yields in homogeneous aqueous solution.

Oxadiazolines represent a class of heterocycle that, although known for over a century, is rather limited in number. These are partially reduced forms of well-known oxadiazoles. Recently, these heterocycles have been receiving increased attention due to their promising biological activity¹ and usefulness as synthetic intermediates.² For example, oxadiazolines are reported to possess antitumor, ^{1a} anti-HIV, ^{1b} antifungal, ^{1c} antiinflammatory, ^{1d} and anticonvulsant ^{1e} properties.

In 1889, Tiemann reported the first synthesis of a 1,2,4-oxadiazoline derivative via cyclocondensation of benz-amidoxime with acetaldehyde.³ This route is one of the most robust and direct approaches to the synthesis of 1,2,4-oxadiazolines. Many groups have used this or a slightly modified route for the synthesis of these compounds.⁴

Furthermore, 1,2,4-oxadiazolines have also been prepared by cycloaddition reactions. For example, Ibata and coworkers employed a formal [2 + 3]-cycloaddition of oxazoles and nitrosobenzenes to prepare 1,2,4-oxadiazolines.^{5a,b} Recently, Wagner et al. disclosed platinum(IV)-assisted [2 + 3]-cycloaddition of nitrones to organonitriles to provide 1,2,4-oxadiazolines and then extended this methodology to the first asymmetric synthesis of oxadiazolines using a chiral sulfoxide ligand.^{5c,d} Eguchi and co-workers synthesized 1,2,4-oxadiazolines by the 1,3-dipolar cycloaddition of alkyl or arylnitriles with nitrones under high-pressure conditions.^{6a,b} More recently, Wang and colleagues described an efficient route suitable for the rapid synthesis of 1,2,4-oxadiazolines via the 1,3-dipolar cycloaddition of in situ-generated nitrile

^{(1) (}a) Chimirri, A.; Grasso, S.; Montforte, A.-M.; Rao, A.; Zappala, M. Farmaco 1996, 51, 125–129. (b) Chimirri, A.; Grasso, S.; Montforte, A.-M.; Montforte, P.; Zappala, M.; Carotti, A. Farmaco 1994, 49, 509–511. (c) Singh, C. P.; Hasan, H. J. Indian Council Chem. 2002, 19, 46–49. (d) Tinperciuc, B.; Parvu, A.; Palage, M.; Oniga, O.; Ghiran, D. Farmacia (Bucharest) 1999, 47, 77–84. (e) Dogan, H. N.; Duran, A.; Rollas, S.; Sener, G.; Armutak, Y.; Keyer-Uysal, M. Med. Sci. Res. 1998, 26, 755–758.

^{(2) (}a) Charmier, M. A. J.; Haukka, M.; Pombeiro, A. J. L. *J. Chem. Soc., Dalton Trans.* **2004**, 2741–2745. (b) Moustafa, A. H. *Synthesis* **2003**, 837–840. (c) Srivastava, R. M.; Rosa, M. F.; Carvalho, C. E. M.; Portugal, S. G. M.; Brinn, I. M.; Pereira, M. C.; Antunes, O. A. C. *Heterocycles* **2000**, *53*, 191–195. (d) Burger, K.; Einhellig, K.; Roth, W.-D.; Daltrozzo, E. *Chem. Ber.* **1977**, *110*, 605–610.

⁽³⁾ Tiemann, F. *Ber.* **1889**, 22, 2412–2417.

^{(4) (}a) Lessel, J.; Herfs, G. *Pharmazie* **2000**, *55*, 22–26. (b) Lessel, J. *Arch. Pharm.* (*Weinheim*) **1993**, *326*, 383–389. (c) Srivastava, R. M.; Freire, M. V. S.; Chaves, A. S. S. C.; Beltrao, T. M.; Carpenter, G. B. *J. Heterocycl. Chem.* **1987**, *24*, 101–105. (d) Malavaud, C.; Boisdon, M.-T.; Barrans, J. *Bull. Soc. Chim. France* **1973**, 2996–3000.

^{(5) (}a) Suga, H.; Ibata, T. *Chem. Lett.* **1991**, 1221–1224. (b) Suga, H.; Shi, X.; Ibata, T. *Bull. Chem. Soc. Jpn.* **1998**, 71, 1231–1236. (c) Wagner, G.; Pombeiro, A. J. L.; Kukushkin, V. Y. *J. Am. Chem. Soc.* **2000**, 122, 3106–3111. (d) Wagner, G.; Haukka, M. *J Chem. Soc.*, *Dalton Trans.* **2001**, 2690–2697.

^{(6) (}a) Yu, Y.; Fujita, H.; Ohno, M.; Eguchi, S. Synthesis 1995, 498–500. (b) Yu, Y.; Ohno, M.; Eguchi, S. J. Chem. Soc., Chem. Commun. 1994, 331–332. (c) Lin, X.-F.; Cui, S.-L.; Wang, Y.-G. Chem. Lett. 2003, 32, 842–843. (d) Shang, Y.-J.; Shou, W.-G.; Wang, Y.-G. Syntlett 2003, 1064–1066. (e) Lin, X.-F.; Zhang, J.; Cui, S.-L.; Wang, Y.-G. Synthesis 2003, 1569–1573.

Table 1. Synthesis of Highly Substituted 1,2,4-Oxadiazolines from Nitriles^a

Entry	Amidoxime 3/Product 6	R _I	R ₂	Reaction Time (h) Step 1 Step 2		Yield (%) ^b
1	a	PhCH ₂	Me	2	0.5	78
2	b	$PhCH_2$	i-Pr	5	0.5	64
3	c	PhCH ₂	*	2	0.5	36
4	d	Me	PhCH ₂	2	0.5	81°
5	e	i-Pr	Me	2	0.5	65
6	f	_ *	Me	2	0.5	58
7	g	Ph	Me	2	0.5	78
8	g	Ph	Me	_d	0.5	100
9	h	*	Me	2	0.5	79
10	i	*	Me	3	0.5	83
11	j	* F	Ме	2	0.5	76
12	k	*	Me	2	0.5	65
13	Ī	*	Me	2	0.5	82
14	m	*	Me	2	0.5	69
15	n	*	Me	2	0.5	72
16	0	*	Me	2	0.5	85
18	p	-0 N	Me	3	0.5	63

^a Unless otherwise mentioned, reactions were conducted in 1:1 EtOH/H₂O as the solvent. ^b Isolated yields. ^c This reaction was conducted in 1:1 CH₃CN/H₂O as solvent. ^d This reaction was carried out using purified benzamidoxime 3g.

oxides with imines.^{6c-e} Furthermore, 1,2,4-oxadiazolines have been prepared by the addition of alkyllithiums to 1,2,4-oxadiazoles^{2c} and diborane reduction of 1,2,4-oxadiazoles.⁷ However, the methods described above suffer from several limitations, including expensive starting materials, harsh reaction conditions, and multiple steps. Herein, we disclose a simple and efficient one-pot synthetic protocol for the synthesis of highly substituted 1,2,4-oxadiazolines from the corresponding nitriles.

During the course of our drug discovery efforts, we discovered that the treatment of alkyl or arylamidoximes 3, which were prepared by reacting nitriles 1 and *N*-alkyl-

hydroxylamines **2** in 1:1 ethanol/water, with diethyl acetylenedicarboxylate (DEAD) provided exclusively 1,2,4-oxadiazolines **6** (Scheme 1).⁸ The addition of amidoximes to DEAD is exothermic, extremely fast, and complete within a few minutes.⁹ The formation of oxadiazolines in this process involves a sequential double Michael addition of amidoximes to the electron-deficient alkyne. In the first step, Michael addition of the amidoxime hydroxyl group to DEAD generates the transient intermediate **5**. Subsequently, the

1392 Org. Lett., Vol. 7, No. 7, 2005

⁽⁷⁾ Yale, H. L.; Spitzmiller, E. R. J. Heterocycl. Chem. **1978**, 15, 1373–1378.

Scheme 1. Oxadiazolines from Diethyl Acetylenedicarboxylate

amidoxime NH in 5 regioselectively undergoes an intramolecular Michael addition at the most electron-deficient carbon, producing the five-membered 1,2,4-oxadiazoline heterocycle $\bf 6$.

As shown in Table 1, the amidoximes derived from a variety of nitriles, including alkyl, cycloalkyl, aryl, and heteroaryl and N-methyl, N-isopropyl, N-cyclohexyl, or N-benzylhydroxylamine, reacted with DEAD very smoothly to provide 1,2,4-oxadiazolines **6a**-**p** in good isolated yields. From entries 1-6, it is clear that the yields of some products are significantly reduced as the steric bulkiness of the amidoxime substituents increases. For example, amidoximes **3b,c**, derived from sterically hindered *N*-isopropyl and N-cyclohexyl hydroxylamines and benzylnitrile, provided products in reduced yields. Similarly, amidoximes 3e,f, derived from isobutyronitrile and cyclopentanecarbonitrile and N-methylhydroxylamine, also furnished products in low yields. Amidoximes 3g-p, derived from aryl- or heteroarylnitriles and N-methylhydroxylamine, reacted with DEAD uneventfully and provided the corresponding oxadiazolines

6g—**p** in very good yields. When pure benzamidoxime **3g** was used, quantitative formation of **6g** (cf. entries 7 and 8) indicates that the addition of amidoximes to DEAD is a very efficient and high-yielding process. Consequently, reduced yields in some cases are presumably due to the poor formation of amidoximes in the first step.

As exemplified in Scheme 2, 1,2,4-oxadiazolines can also be prepared by conjugative addition of amidoximes to other

electron-deficient alkynes. As expected, addition of amidoxime **3a** to alkynes **7a**—**c** was slower compared with the more electron-deficient DEAD. Reaction of amidoxime **3a** with ethyl propiolate **7a** was complete in 2 h and furnished **8a** in 33% yield. The addition of **3a** to **7b** was significantly slower, furnishing oxadiazoline **8b** in 53% yield after 58 h. Coupling of **3a** and ketone **7c** was complete in 6 h and provided oxadiazoline **8c** in 61% isolated yield.

In summary, we have described an easy and practical onepot approach to the synthesis of 1,2,4-oxadiazolines from nitriles. This method works well with a variety of amidoximes derived from the combination of different alkyl or aryl nitriles and *N*-alkylhydroxylamines and provided highly substituted 1,2,4-oxadiazolines in good yield. One of the most important advantages with this methodology is that there is no need to isolate the amidoxime intermediates. This process therefore constitutes a short and practical protocol for the formation of such heterocycles. In addition, these reactions are carried out in an environmentally benign solvent system.

Acknowledgment. We thank Drs. Nicholas A. Meanwell and Michael A. Walker for their support of this work.

Supporting Information Available: General experimental conditions, representative procedure, and analytical data for all compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0502073

Org. Lett., Vol. 7, No. 7, 2005

⁽⁸⁾ Typical Procedure for the Synthesis 1,2,4-Oxadiazolines. A mixture of benzylnitrile (2.343 g, 20 mmol), N-methylhydroxylamine hydrochloride (0.835 g, 10 mmol), and Na₂CO₃ (0.64 g, 6 mmol) in 1:1 EtOH/H₂O (20 mL) was heated at 80 °C for 2 h. Then, the reaction mixture was cooled to ambient temperature, and diethyl acetylenedicarboxylate (1.76 mL, 11 mmol) was added via syringe over 5 min. After 30 min, the reaction mixture was taken up into EtOAc (100 mL), washed with brine (2 × 20 mL), dried (Na₂SO₄), filtered, and concentrated, and the resulting yellow residue was purified by flash chromatography on silica gel column using a 3:7 EtOAc/hexanes mixture to afford the desired product 6a as a yellow oil (2.61 g, 78%). ¹H NMR (500 MHz, CDCl₃) δ: 7.32–7.23 (5H, m), 4.33-4.20 (2H, m), 4.13 (2H, q, J = 7.0 Hz), 3.67 (2H, s), 3.31 (1H, d, $J_{AB} = 16.2 \text{ Hz}$), 3.00 (3H, s), 2.96 (1H, d, $J_{AB} = 16.2 \text{ Hz}$), 1.29 (3H, t, J = 7.0 Hz), 1.23 (3H, t, J = 7.0 Hz). ¹³C NMR (125 MHz, CDCl₃) δ : 168.8, 168.4, 165.6, 134.0, 128.9, 128.7, 127.4, 103.7, 62.1, 60.8, 42.3, 40.1, 32.8, 14.2, 14.1. HRMS (M + H): calcd for $C_{17}H_{23}N_2O_5$, 335.1607; found, 335.1607. Anal. Calcd for C₁₇H₂₂N₂O₅: C, 61.06; H, 6.63; N, 8.37. Found: C, 60.80; H, 6.66; N, 8.30.

⁽⁹⁾ *Caution*: We highly recommend cooling the reaction flask in an ice—water bath before adding DEAD when carrying out these reactions on a larger scale (>10 mmol of amidoxime).

⁽¹⁰⁾ In cases where $R_2 = H$, 5 is stable and isolated as a mixture of cis/trans isomers. See: Culbertson, T. P. J. Heterocycl. Chem. 1979, 16, 1423-1424 and references therein.